Schedule to

CERTIFICATE OF ACCREDITATION

Client Number 8

Callaghan Innovation

Measurement Standards Laboratory of New Zealand

PO Box 31310, Lower Hutt, 5040 69 Gracefield Road, Gracefield, Lower Hutt, 5010

Telephone 04 931-3000 http://www.measurement.govt.nz/

Authorised Representative

Dr Blair Hall

Principal Research Scientist and Quality Manager

Programme

Metrology & Calibration Laboratory

Accreditation Number 1

Initial Accreditation Date 30 July 2004

Conformance Standard

ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories

Laboratory Services Summary

5.01 5.02	Engineers' Limit Gauges Jigs, Fixtures, Cutting Tools and Components
5.05	Geometric Form
5.11	Working Standards of Length and Angle
5.12	Precision Measuring Instruments
5.14	Laser Frequency
5.21	Masses
5.31	Volumetric Equipment
5.32	Density
5.33	Hydrometers
5.35	Hygrometry
5.41	Barometers
5.42	Differential Pressure Measuring Devices (including Manometers)
5.43	Pressure Gauge Testers and Pressure Balances
5.44	Pressure and Vacuum
5.61	Temperature Measuring Equipment
5.65	Photometers and Radiometers
5.66	Lamps, LEDs, Lasers and Other Light Sources
5.67	Colour of Light Sources and Colorimeters
5.68	Optical Properties of Materials: Spectral
5.69	Optical Properties of Materials: Spectrally integrated
5.82	Resistors, Resistance Boxes and Potential Dividers
5.84	Capacitors

Operations Manager Authorisation:	AHOKKO	Issue 58	Date:02/11/20	Page 1 of 23
--------------------------------------	--------	----------	---------------	----------------------------

Schedule to

5.85	Inductors and Transformers
5.86	Voltage Standards and Current Standards
5.87	Transfer Instruments (AC/DC)
5.88	Calibrators for Instrumentation
5.89	Indicating Instruments and Recording Instruments
5.90	Bridges, Potentiometers and Test Sets
5.91	Frequency Measurement and Time Measurement
5.92	Waveform Measurement
5.93	Signal Sources
5.97	High Voltage Testing

Key Technical Personnel

Dr Laurie Christian 5.82, 5.85(d), 5.86, 5.87, 5.88, 5.89, 5.90, 5.92(b), 5.93(b), 5.97

Dr Mark Clarkson 5.41, 5.42, 5.43, 5.44

Mr David Cochrane 5.05(d)(ii)

Dr Adam Dunford 5.91(a)(c)(d)(g), 5.92(a)(c), 5.93(a)

Dr Murray Early 5.82, 5.86, 5.87, 5.88, 5.89(a-d,i), 5.90(a,f,g), 5.92(b), 5.93(b), 5.97

Dr Lucy Forde 5.05(d)(ii)(h), 5.11(f)(i)(n), 5.12, 5.14 Ms Eleanor Howick 5.01, 5.02, 5.05, 5.11, 5.12, 5.14

Mr Keith Jones 5.82, 5.84, 5.85, 5.86, 5.87, 5.88(a,c,e), 5.89(a,c,e,f,g,h,i,l), 5.90,

5.92(b), 5.93(b), 5.97

Dr Annette Koo 5.68, 5.69

Dr Tim Lawson 5.82(a), 5.86(b), 5.88(c), 5.89(c)

Dr Jeremy Lovell-Smith 5.35 Dr Peter Mcdowall 5.41, 5.44

Mr Greg Reid 5.21, 5.31, 5.32, 5.33 Dr Peter Saunders 5.61, 5.82(a), 5.90(a)(c)

Dr Francois Shindo 5.65, 5.66, 5.67

Mr Tom Stewart 5.82(a), 5.84, 5.85(a,d), 5.88(b,d,e,f), 5.89(a,b,c,d-h,l), 5.90(c,f,g)

Mr Neil Swift 5.05(d)(ii), 5.65, 5.66, 5.67, 5.68, 5.69

Mr Yang Yenn Tan 5.65

Dr Emile Webster 5.61(a)(b)(c)(p)

Dr David Rodney White 5.35, 5.61, 5.82(a), 5.90(a)(c)
Mr Chris Young 5.01, 5.02, 5.05, 5.11, 5.12, 5.14

Operations Manager Authorisation:

1 HOBERO

Issue 58

Date:02/11/20

Page 2 of 23

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation
Metrology & Calibration Laboratory
SCOPE OF ACCREDITATION

Accreditation Number 1

The uncertainty of a Calibration and Measurement Capability (CMC) is expressed as an expanded uncertainty with a level of confidence of approximately 95% Note1.

Measurement results are traceable to the International System of Units (SI)

Calibrations are generally performed at the premises of the accredited laboratory, although some may be carried out in the field and some at customer premises.

Measurand Conditions CMC Uncertainty

5.01 Engineers' Limit Gauges

(a) Plain plug, ring and gap gauges. Taper plug and ring gauges.

Setting plug gauges by comparison with gauge blocks

Mean diameter 0.5 mm to 25 mm Q(130, 1.4L) nm, L in mm Mean diameter 25 mm to 300 mm Q(95, 1.8L) nm, L in mm

Setting ring gauges by comparison with gauge blocks

Mean diameter 1 mm to 300 mm Q(95, 1.8L) nm, L in mm

Where $Q(a,b) = \sqrt{a^2 + b^2}$

(e) Position and receiver gauges involving both linear and angular measurements.

Lobster tail gauges 54 mm to 60 mm 0.01 mm

(g) Other gauges involving measurements similar to those under (a) and including depth gauges, height gauges and gauges involving plane coordinated position of holes and spigots.

Step gauge face spacing by comparison with end standards on CMM

90 mm to 700 mm Q(0.7, 1.2 x $10^{-3}L$) μ m, L in mm

2D CMM artefacts (ball plate centre coordinates) by comparison with end standards on CMM

Side length between 100 mm and 600 mm $Q(0.9, 1.3 \times 10^{-3} L) \mu m$, L in mm

5.02 Jigs, Fixtures, Cutting Tools and Components

Measurement of components/objects on CMM

Operations Manager Authorisation: Issue 58 Date:02/11/20 Page 3 of 23

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation Metrology & Calibration Laboratory **SCOPE OF ACCREDITATION**

Accreditation Number 1

Error of indicated size 1 mm to 800 mm $(1.6 + 3.5L) \mu m, L in m$

Measurement of components/objects on Profile Projector

Error of indicated size up to 200 mm x 200 mm $Q(0.76, 12.6L) \mu m, L in m$

5.05 **Geometric Form**

> (b) Roundness

Variability in roundness Range of diameters

0 μm to 400 μm 1 mm to 300 mm $Q(0.025, 0.018R) \mu m, R in \mu m$

(d) Flatness of Optical Flat, Parallelism, Wedge Angle of Optical Wedge or Flat

Length section

Parallelism Range of diameters

0 μm to 10 μm 10 mm to 35 mm 0.08 µm

Flatness Range of diameters

10 mm to 35 mm 0 μm to 2.5 μm 0.06 µm

Photometry section ii)

Flatness of optical flats, one-axis or whole surface

Up to 150 mm diameter 22 nm Up to 250 mm diameter 33 nm

(h) Levelness

Levelling of dynamic weigh station sites by measurement of deviation from a horizontal plane (calibration carried out on site)

Deviation in height Horizontal range

> 1.8 m to 60 m $Q(41, 7.1L) \mu m, L in m is the$

horizontal distance to staff

5.11 Working Standards of Length and Angle

(a) Gauge blocks and accessories

Measurement of central length

By interferometry 0.5 mm to 103 mm Q(17, 0.15L) nm, L in mm

Operations Manager Authorisation: 1/10/800-

Issue 58

Date:02/11/20

Page 4 of 23

Schedule to

CERT	ΓIFIC	ATE OF A	CCREDITATIO	Tohu Matatau Acteoroa
	/ & Calibr	ion ration Laboratory REDITATION		Accreditation Number 1
	By con	nparison	0.1 mm to 103 mm	Q(36, 1.4 <i>L</i>) nm, <i>L</i> in mm
	Measu	rement of variati	on in length	Q(30, 0.35 <i>L</i>) nm, <i>L</i> in mm
	(b)	Length bars a	nd accessories	
	Measu	rement of centra	al length and variation in leng	gth
	Long g	gauge blocks by	comparison with gauge bloc	ks using the Horizontal Federal
	100 m	m to 300 mm		Q(91, 1.3 <i>L</i>) nm, <i>L</i> in mm
	Measu	rement of variati	on in length	Q(34, 0.35 <i>L</i>) nm, <i>L</i> in mm
	Long g	gauge blocks by	comparison with gauge bloc	ks using the LBC
	100 m	m to 1500 mm		Q(370, 0.48 <i>L</i>) nm, <i>L</i> in mm
	Measu	rement of variati	on in length	100 nm
	(f)	Precision line	ar scales	
	Engine	er or machinist	scale-line spacing	
	0.1 m	to 4 m		Q(10, 8.2 <i>L</i>) µm, <i>L</i> in m
	(h)	Precision grat	icules including stage micro	meters and haemocytometer counting
	1 µm t	o 10 mm		0.5 µm
	(i)	Surveying tap	es and petroleum dip tapes	
	4 m to	50 m		Q(10, 10.5 <i>L</i>) μm, <i>L</i> in m
	Survey	or levelling rods		
	0.5 m	to 3 m		Q(10, 10 <i>L</i>) μm, <i>L</i> in m
	(n)	Geodetic Bas	elines (calibrations carried c	out on site)
	Interva	l distances	2 m to 1500 m	Q(0.3, 0.6 x 10 ⁻³ L) mm, L in m
5.12	Preci	sion Measurir	ng Instruments	
	(a)	Length measu	uring machines	

Operations Manager Authorisation:	MAOKEO	Issue 58	Date:02/11/20	Page 5 of 23
--------------------------------------	--------	----------	---------------	----------------------------

Schedule to

OLIVI	11 107	11	JOILEDITA	111011	Mahahaha	
	& Calibra	on Ition Laboratory EDITATION			Accreditation	Number 1
	Electror	nic distance meas	suring machines ((EDMs)		
	Error of indicated displacement		1 m to 206 m		Q(0.13, 7 x 10 ⁻⁴ <i>L</i>) r	mm, <i>L</i> in m
	Error of indicated frequency		5 MHz to 100	MHz	0.16 x 10 ⁻⁶ L x frequ	uency
	Error of	prism constant			0.26 mm	
5.14	Laser Frequency					
	(a) Stabilised lasers of the mise en pratique					
	Absolut	e frequency	473 612 GHz		25 kHz	
	(b)	Other stabilised	l lasers			
	Absolut	e frequency	473 612 GHz		0.2 MHz	
5.21	Masse	s				
	 (a) Examination of laboratory standards of mass (b) Examination of industrial standards of mass (c) Determination of the mass of solid objects 					
	0.1 g to 1 g to 1 10 g to 0.1 kg to 1 kg to 10 kg to 20 kg to	0 g 100 g o 1 kg 10 kg o 20 kg			0.4 µg to 0.7 µg 0.7 µg to 1.6 µg 1.6 µg to 4 µg 4 µg to 8 µg 8 µg to 40 µg 1.1 x 10 ⁻⁷ 1.6 x 10 ⁻⁶ 10 g to 16 g	
5.31	Volum	etric Equipme	ent			
	(a)				ding examination for ant national or interna	
	0.02 mL	to 2 mL			0.0002 mL	
	(b)	Examination of	other types of vo	lumetric apparatus		
	0.002 L	to 50 L			0.01 %	
	ns Manage ithorisation		1sto-	Issue 58	Date:02/11/20	Page 6 of 23

Schedule to

Metrology	Callaghan Innovation Metrology & Calibration Laboratory SCOPE OF ACCREDITATION			Accreditation	Number 1	
5.32	Density					
	(a)	Density of solids				
	1400 kg/m³ to 3000 kg/m³ 7800 kg/m³ to 8200 kg/m³			1.0 x 10 ⁻⁵ 1.5 x 10 ⁻⁵		
	(b)	Density of liquids				
	600 kg/m	³ to 2000 kg/m ³		2.0 x 10 ⁻⁵		
5.33	Hydrom	neters				
	(b)	Density hydrometers Specific gravity hydrometers Brix hydrometers Proof spirit hydrometers				
	600 kg/m	³ to 2000 kg/m ³		2.0 x 10 ⁻⁵		
5.35	5 Hygrometry					
	(a)	Humidity measuring devices				
	i)	Dew point hygrometers				
	-70 °C to 0 °C to 40 °C to	40 °C		0.2 °C to 0.06 °C 0.06 °C 0.06 °C to 0.12 °C		
	ii)	Relative humidity hygrometers				
	10 % to 9 (Tempera	95 % ature between 0 °C and 70 °C)		0.006 x h % h is relative humidi as a percentage, th		
	iii)	Air temperature		as a percentage, tr	iat 15 % III	
	0 °C to 70	O°C		0.1 °C		
5.41	Barome	etric indicators or transduc	ers			
	Aneroid b	parometers (including digital baro	meters)			
50 kPa to 90 kPa 90 kPa to 110 kPa 110 kPa to 130 kPa 2.0 x 10 ⁻⁵ 2.0 x 10 ⁻⁵						
	ns Manager thorisation:	MAOREO	Issue 58	Date:02/11/20	Page 7 of 23	

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation
Metrology & Calibration Laboratory
SCOPE OF ACCREDITATION

Accreditation Number 1

5.42 Differential Pressure Measuring Devices (including Manometers)

- (a) Diaphragm types
- (b) Liquid column types, inclined and vertical
- (c) Transducers and transmitters
- (d) Other types

1 Pa to 10000 Pa $(6 \times 10^{-3} + 4.5 \times 10^{-5} p)$

Pa, p in Pa

5.43 Pressure Gauge Calibrators and Pressure Balances

i) Absolute pressure – gas medium

8 kPa to 550 kPa 2 x 10⁻⁵ 550 kPa to 7000 kPa 6 x 10⁻⁵

ii) Gauge pressure – gas medium

-100 kPa to -10 kPa 7×10^{-5}

-10 kPa to -1 kPa 200 mPa to 100 mPa, decreasing linearly

1 kPa to 8 kPa

100 mPa to 160 mPa, increasing linearly

8 kPa to 550 kPa 2 x 10⁻⁵ 550 to 11000 kPa 6 x 10⁻⁵

iii) Gauge pressure – liquid medium

0.1 MPa to 17 MPa $(1 \times 10^{-4} + 6.6 \times 10^{-5}p)$

MPa (p in MPa)

17 MPa to 280 MPa $(6.6 \times 10^{-5}p + 7 \times 10^{-7}p^{2})$

MPa (p in MPa)

5.44 Pressure and Vacuum

(a) Pressure gauges

(b) Vacuum gauges

(c) Pressure transducers

(d) Pressure recorders

i) Absolute pressure – gas medium

 8 kPa to 90 kPa
 2×10^{-5}

 90 kPa to 110 kPa
 1×10^{-5}

 110 kPa to 550 kPa
 2×10^{-5}

Operations Manager Authorisation:

1 HOBERO-

Issue 58

Date:02/11/20

Page 8 of 23

Schedule to

	& Calibra	on ation Laboratory EDITATION		Accreditation	Number 1	
	550 kPa	a to 7000 kPa		6 x 10 ⁻⁵		
	ii)	Gauge pressure – gas medium				
	8 kPa to 90 kPa 110 kPa	to 8 kPa o 90 kPa to 110 kPa a to 550 kPa I 1000 kPa		0.0031 kPa 2 x 10 ⁻⁵ 1 x 10 ⁻⁵ 2 x 10 ⁻⁵ 6 x 10 ⁻⁵		
	iii)	Absolute pressure – liquid mediu	ım			
	0.3 MPa	a to 17 MPa		(1 x 10 ⁻⁴ + 6.6 x 10 MPa (<i>p</i> in MPa)) ⁻⁵ p)	
	17 MPa	to 280 MPa		(6.6 x 10 ⁻⁵ p + 7 x 1 MPa (p in MPa)	$0^{-7}p^2$)	
	iv)	Gauge pressure – liquid medium				
	0.2 MPa	a to 17 MPa	(1 x 10 ⁻⁴ + 6.6 x 10 ⁻⁵ <i>p</i>) MPa (<i>p</i> in MPa)			
	17 MPa to 280 MPa			(6.6 x 10 ⁻⁵ p + 7 x 10 ⁻⁷ p ²) MPa (p in MPa)		
5.61	Tempe	erature Measuring Equipmer	nt			
	(a)	Noble-metal thermocouples				
	0 °C to 962 °C	962 °C to 1100 °C		0.026 °C 0.22 °C		
	(b)	Base-metal thermocouples				
	0 °C to	1100 °C		1.6 °C		
	(c)	Platinum (and other metallic) res	istance thermomete	rs		
	Contact	thermometers, including Standard	d PRTs at the followi	ng fixed points		
	Argon triple point (-189.3442 °C) Mercury triple point (-38.8344 °C) Water triple point (0.01 °C) Gallium melting point (29.7646 °C) Indium freezing point (156.5985 °C) Tin freezing point (231.928 °C) Zinc freezing point 419.527 °C)			1 mK 0.4 mK 0.1 mK 0.19 mK 0.56 mK 0.85 mK 1.9 mK		
	ns Manage Ithorisatior		Issue 58	Date:02/11/20	Page 9 of 23	

Schedule to

_			$\gamma_{ij} _{ij} _{ij}$				
Metrology	Innovation & Calibration F ACCRED	on Laboratory DITATION		Accreditation	Number 1		
		n freezing point (660.323 °C) ezing point (961.78 °C)		10 mK 20 mK			
	(j) I	Radiation thermometers					
	Direct rea	ding, single spot radiation therm	ometers and therma	ıl imagers			
	-25 °C to	1100 °C		0.6 °C			
	(p)	Other direct reading temperature	measuring systems	s, including Industrial	PRTs		
	-190 °C to 0 °C 0 °C to 200 °C 200 °C to 550 °C			(2.4 - 0.005 x t) mk (2.4 + 0.008 x t) ml (4.0 + 0.03 x (t - 20 t in °C	K, t in °C		
5.65	Photometers and Radiometers						
	(a)	Photometers					
	10 lux to	3000 lux		0.8 %			
	(b)	lluminance meters					
	0.005 lux 10 lux to 3 3000 lux t			3 % 0.8 % 3 %			
	(c) I	_uminance meters					
	800 cd/m ²	to 800 cd/m ² ² to 27000 cd/m ² /m ² to 33000 cd/m ²		1.6 % 7 % 11 %			
	(d)	JV meters					
	For Irradia	ance levels of 1 µW.cm ⁻² to 5000) μW.cm ⁻²				
	240 nm to 270 nm to 310 nm to	310 nm		5 % 2.3 % 2.5 %			
	For radiant exposure levels greater than 1.3 µJ.cm ⁻²						
240 nm to 270 nm 20 % to 5 %, decreases with exposure time					eases with		
	s Manager thorisation:	sporto	Issue 58	Date:02/11/20	Page 10 of 23		

Schedule to

OLIVI							
Callaghan Innovation							
	& Calibration Laboratory			Accreditation	Number 1		
	F ACCREDITATION			7 tool cultation			
	270 nm to 310 nm			19 % to 2.3 %, dec	reases with		
				exposure time			
	310 nm to 380 nm			19 % to 2.5 %, dec	reases with		
				exposure time			
	(g) Laser power meters						
	Laser lines from 450 nm to 500 i	nm		0.45 % to 0.23 %,			
	1 lines from 500 pm to 550			linearly with wavel			
	Laser lines from 500 nm to 550 i	IIII		0.23 % to 0.15 %, of the linearly with wavelength			
	Laser lines from 550 nm to <650) nm		0.15 %	engui		
	Laser lines from 650 nm to 750 i			0.17 %			
	Laser lines from 750 nm to 800 i			0.19 %			
	(h) Detector spectral responsivity measurement						
	Discrete wavelengths						
	Laser lines from 450 nm to 500 i	nm		0.45 % to 0.23 %, of the contract of the contr			
	Laser lines from 500 nm to 550 i	nm		0.23 % to 0.15 %, decreases linearly with wavelength			
	Laser lines from 550 nm to <650	nm (0.15 %			
	Laser lines from 650 nm to 750 i	nm		0.17 %			
	Laser lines from 750 nm to 800 i	nm		0.19 %			
	The below CMCs are for spectra	l power le	evels of 0.1 µW.nm ⁻¹	to 10 µW.nm ⁻¹ and			
	corresponding irradiance levels u	using app			els below		
	0.1 µW.nm ⁻¹ uncertainties will inc	crease.					
	240 nm to <300 nm			1.4 %			
	300 nm to <340 nm			0.98 %			
	340 nm to 360 nm			1.02 % to 0.98 %,	decreases		
				linearly with wavele			
	360 nm to 380 nm			0.98 %			
	380 nm to 450 nm			0.98% to 0.45%			
	450 nm to 800 nm			linearly with wavel Same as for discre	te		
	800 nm to 950 nm			wavelengths – see 0.19% to 0.33%, in linearly with wavel	creases		
5.66	Lamps, LEDs, Lasers and	Other I	ight Sources		J		
0.00	Lamps, LLDs, Lasers and	Cuici L	igin oodi ces				
Operation	s Manager						
	s Manager thorisation:	_	Issue 58	Date:02/11/20	Page 11 of 23		
			i e		ı		

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation
Metrology & Calibration Laboratory
SCOPE OF ACCREDITATION

Accreditation Number 1

Calibrations within 5.66 may be offered in the field as well as in the laboratory. An increase in uncertainty due to environmental conditions and other influence variables present in the field may need to be applied.

(a) Lamps: luminous intensity

10 cd to 5000 cd 0.8 %

(e) Illuminance

0.005 lux to 30000 lux 3 %

(f) General sources: spectral irradiance

250 nm to 350 nm 0.0001 W/(m².nm) to 2.6 % to 1.6 %

 $0.5 \text{ W/(m}^2.\text{nm})$

350 nm to 850 nm $0.001 \text{ W/(m}^2.\text{nm})$ to 1.6 % to 1.4 %

 $0.5 \text{ W/(m}^2.\text{nm})$

(h) Photoluminescent materials

from 0.5 mcd/m^2 0.5 mcd/m^2 or 15 %,

whichever is greater

5.67 Colour of Light Sources and Colorimeters

Calibrations within 5.67 may be offered in the field as well as in the laboratory. An increase in uncertainty due to environmental conditions and other influence variables present in the field may need to be applied.

(a) General sources:

Colour emitted in CIE x, y colour space 0.0005 to 0.005 in x and y,

varies with measurand

Colour emitted in CIE u, v colour space 0.0007 in u and v

(d) Lamps:

Correlated colour temperature 2700 K to 3000 K 20 K

5.68 Optical Properties of Materials: Spectral

(a) Regular transmittance (T) and optical density or absorbance (OD)

Bandwidth 1 nm to 3 nm

Operations Manager Authorisation: Issue 58 Date:02/11/20 Page 12 of 23

Schedule to

				sailing.	
Callaghan Innovation Metrology & Calibrati SCOPE OF ACCREI	on Laboratory			Accreditation	Number 1
240 nm to 380 nm to 240 nm to	o 1000 nm	T = 0.0001 to T = 0.01 to 1.0 T = 0.0001 to OD = 2 to 4 OD = 0 to 2)	0.0002.T ^{0.2} 0.005.T 0.0007.T ^{0.65} 0.000087.10 ^{0.8.OD} 0.0022	
380 nm to	o 1000 nm	OD = 0 to 4		0.00031.10 ^{0.35.OD}	
(b)	Wavelength calib	oration filters			
240 nm to 800 nm to	o 800 nm o 1100 nm			0.13 nm 0.13 nm to 0.25 nm	1
(c)	Diffuse transmitta	ance			
240 nm to	o 400 nm			0.005 to 0.0002 or 5 % of value wh greater 0.0002 or 5 % of va	
400 1111 1	J 1000 11111			whichever is greate	
(d)	Diffuse reflectand	ce in 0/d and 6/d	d geometries		
360 nm to	o 1000 nm	0.016 to 0.9		0.008 to 0.0036,	41-
360 nm to	o 1000 nm	0.9 to 1.0		varies with wavelength 0.4 % of value	
(e)	Specular reflecta	ince at normal ir	ncidence		
240 nm to	o 800 nm	0.05 to 1		1 % of value	
(f) Bidir	ectional reflectan	ce distribution fa	actor and bidirection	al radiance factor	
360 nm t 400 nm t 700 nm t Represer	th scattering geo	for 0°:45° geom	etry and white specti	1.5 % of value 0.5 % of value 1.5 % of value ralon only. Measurem dependence of scatte	
5.69 Optical	Properties of	Materials: Sp	ectrally integrate	ed	
(a)	Luminous transm	nittance			
Spectrally General r	y flat materials materials			0.3 % of value 5 % of value	
Operations Manager Authorisation:			Issue 58	Date:02/11/20	Page 13 of 23

Schedule to

OLIVI	11 107	TE OF MOOREDITA	Mahahaha			
	& Calibra	on ation Laboratory EDITATION		Accreditation	Number 1	
	(b)	Luminous reflectance				
	Genera	l materials		5 % of value		
	(c)	Colour transmitted, x, y, Y or L*a	n*b*			
	In x and Lumino	d y us transmittance Y for (0.1 < Y < 1)	0.005 5 % of value		
	(d)	Colour of surfaces, x, y, Y or L*a	*b*			
	In x and y Luminance factor Y for (0.1 < Y < 1)			0.003 5 % of value		
	(e)	Retroreflectors: CIL value				
	Coeffic	ent of luminous intensity		5 %		
5.82	Resis	s				
	(a)	Precision resistors, resistance be	oxes and conductant	ince boxes		
	0.1 Ω to 1 Ω (Current ≤ 100 mA) 1 Ω to 10 kΩ			0.2 μΩ/Ω 0.12 μΩ/Ω		
	(Power	dissipation ≤ 10 mW)		•		
	10 mΩ (Currer	to 1000 mΩ ıt ≤ 1A)		25 μΩ/Ω		
		to 1000 mΩ at = 1 A to 875 A)		63 $R^{-0.35}$ μΩ/Ω, R i values range from to 6 μΩ/Ω		
		Ω to 1 M $Ω$ d voltages = 5 V to 100 V)		0.7 μΩ/Ω		
		$G\Omega$ to 1 $G\Omega$ d voltages = 5 V to 100 V)		$(0.7 + 27 R - 20 R^3)$ μΩ/Ω, R in GΩ, values range from 0.7 μΩ/Ω to 8 μΩ/Ω		
	1 M Ω to 5 T Ω (Applied voltages = 100 V to 1000 V)			$(35 + 6.9 \times 10^{-11} \ R^2 + 9.4 \ \mu\Omega/\Omega$ x $10^{-4}R$) $\mu\Omega/\Omega$, R in MΩ, values range from 35 $\mu\Omega/\Omega$ to 6460 $\mu\Omega/\Omega$		
	0 MΩ to	ο 1 ΜΩ		(2000/f + 19 <i>R</i>) μΩ	, fin Hz,	
	ns Manage thorisation		Issue 58	Date:02/11/20	Page 14 of 23	

Schedule to

Metrology	n Innovation v & Calibration Laboratory DF ACCREDITATION	Accreditation Number 1		
	(frequency, f = 40 Hz to 2 kHz)	R in $\Omega,$ values range from 1 $\mu\Omega$ to 19 Ω		
	(b) Volt ratio boxes and potential dividers			
	1 V/V to 1000 V/V (Input voltage ≤ 1100 V, output voltage ≥ 1 V)	0.4 x 10 ⁻⁶		
	0 kV to 50 kV	3 mV/V		
	(c) DC shunts			
	0.1 m Ω to 1 Ω (Applied current 1 A to 875 A) (Applied voltage 10 mV to 1 V)	63 $R^{-0.35}$ μΩ/Ω, R in mΩ values range from 141 μΩ/Ω to 6 μΩ/Ω		
	(d) AC shunts			
	0 Ω to 100 Ω (frequency, $f = 40$ Hz to 2 kHz)	(2000/ f + 19 R) μ Ω , f in Hz, R in Ω , values range from 1 μ Ω to 1900 μ Ω		
	0.2 A to 100 A (frequency, $f = 47$ Hz to 75 Hz)	25 μΩ/Ω		
5.84	Capacitors			
	(a) Precision capacitors			
	0 μF to 100 μF (frequency, f = 40 Hz to 2 kHz)	(0.2/ f + 22C) pF, f in Hz, C in μ F, values range from 0.0001 pF to 2200 pF		
	Dissipation factor 0 to 0.2 (frequency, $f = 40$ Hz to 2 kHz) (capacitance, $C = 0.5$ pF to 100 μ F)	(0.000027 + 0.00027/C) C in pF values range from 0.00057 to 0.000027		
	(c) Capacitance potential dividers			
	1 kV rms to 35 kV rms (frequency, $f = 50$ Hz to 3 kHz)	1 mV/V		
5.85	Inductors and Transformers			
	(a) Inductors, self and mutual			
	ns Manager athorisation: Issue 58	Date:02/11/20 Page 15 of 23		

Schedule to

Metrology	Innovation & Calibration Laboratory F ACCREDITATION		Accreditation	Number 1
	0 H to 100 H (frequency, f = 40 Hz to 2 kHz)		(0.2/f + 14 <i>L</i>)H μH, <i>L</i> in H, values rang 0.0001 μH to 1400	e from
	Equivalent series resistance 0Ω to $1 M\Omega$ (frequency, $f = 40 \text{ Hz}$ to 2 kHz)		(2000/ f + 19 R) μ Ω , R in Ω , values rang μ Ω to 19 Ω	•
	(d) Current transformers: protection and measurement			
	Primary currents 1 A to 4000 A, ratios 0.2	2 A/A to 4000 A/A		
	Ratio error -25 % to 25 % Phase error -36 crad to 36 (frequency, f = 50 Hz; secondary currents	crad	0.0010 % to 0.13 % 0.0010 crad to 0.18	
5.86	Voltage Standards and Current St	andards		
	(b) Electronic emf reference devices	S		
	1 V 1.018 V 10 V		0.1 μV 0.1 μV 1.5 μV	
5.87	Transfer Instruments (AC/DC)			
	0.002 V to 0.6 V > 0.6 V to 6 V > 6 V to 1000 V (frequency, f = 10 Hz to 1 MHz)		11 μV/V to 321 μV/ 6 μV/V to 77 μV/V 9 μV/V to 76 μV/V	V
	1 V and 3 V (frequency, $f = 1$ MHz to 100 MHz)		0.16 mV/V to 2.6 m	nV/V
	0.1 mA to 0.01 A (frequency, $f = 40 \text{ Hz}$ to 2 kHz)		15 μA/A to 38 μA/A	1
	0.01 A to 20 A (frequency, $f = 40 \text{ Hz}$ to 100 kHz)		15 μA/A to 70 μA/A	1
5.88	Calibrators for Instrumentation			
	(a) DC voltage			
	0 V to 12 V		(0.05 + 0.15 <i>U</i>) μV, values range from	
Operations Manager Authorisation:		Issue 58	Date:02/11/20	Page 16 of 23

Schedule to

				"Milling"	
Callaghan Inne Metrology & C SCOPE OF A	alibratio			Accreditation	Number 1
12	2 V to 11	00 V		1.85 μV 0.5 μV/V	
(b)) 4	C voltage			
	002 V to equency	1000 V v, f = 10 Hz to 1 MHz)		6 μV/V to 650 μV/V	/
	V and 3 equency	V v, f = 1 MHz to 100 MHz)		0.3 mV/V to 8 mV/V	V
(c)) [OC current			
10) pA to 1	0 μΑ		values range from 5 µA/A to 560 µA/A	
) μΑ to 1 Α to 20 /			5 μΑ/Α 5 μΑ/Α 5 Ι ^{0.43} μΑ/Α, <i>I</i> in Α,	
	O A to 1000 A			range from 5 μ A/A 5 I ^{0.43} μ A/A, <i>I</i> in A, range from 18 μ A/A	to 18µA/A values
(d)) A	C current			
(fr.	0.1 mA to 2 A (frequency, $f = 40$ Hz to 2 kHz) 0.01 A to 100 A (frequency, $f = 47$ Hz to 75 Hz)			35 μA/A to 170 μA/ 25 μA/A	/A
(e)) F	Resistance			
0.0	0 Ω to 10 Ω 0.01 k Ω to 1 M Ω 1 M Ω to 100 M Ω			40 $\mu\Omega$ 3 $\mu\Omega/\Omega$ (2 + $R^{0.8}$) $\mu\Omega/\Omega$, R values range from 42 $\mu\Omega/\Omega$	
(f)	Δ	C power sources			
Sa	Same as 5.89 (e) and (f)				
5.89 Indicating Instruments and Record			ding Instruments	;	
(a)	(a) DC voltmeters				
	0 V to 0.001 V 0.001 V to 12 V			0.05 μV (0.05 + 0.15 <i>U</i>) μV, <i>U</i> in V,	
Operations Ma Authori		MAORTO	Issue 58	Date:02/11/20	Page 17 of 23

Schedule to

CLIVIII ICATE OF ACCINE	DITATION	Mahahaha				
Callaghan Innovation Metrology & Calibration Laboratory SCOPE OF ACCREDITATION		Accreditation	Number 1			
12 V to 1100 V		values range from 1.85 μV 0.5 μV/V	0.05 μV to			
(b) AC voltmeters						
0.002 V to 1000 V (frequency, f = 10 Hz to 1 MHz) 1 V and 3 V (frequency, f = 1 MHz to 100 MHz	·)	9 μV/V to 862 μV/V 0.3 mV/V to 8 mV/				
(c) DC ammeters						
10 pA to 10 μA 10 μA to 1 A 1 A to 20 A 20 A to 875 A		values range from 5 µA/A to 560 µA/A 5 µA/A 5 $I^{0.43}$ µA/A, I in A, range from 5 µA/A 5 $I^{0.43}$ µA/A, I in A values range from 92 µA/A	values to 18µA/A			
(d) AC ammeters						
0.1 mA to 2 A (frequency, f = 40 Hz to 2 kHz) 0.2 A to 100 A (frequency, f = 47 Hz to 75 Hz)		60 μA/A to 140 μA 25 μA/A	/A			
(e) Wattmeters						
Conditions Voltage 60 V to 240 V, current 0.0 inductive or capacitive	Voltage 60 V to 240 V, current 0.01 A to 120 A, frequency 45 Hz to 75 Hz, and PF 1 to 0,					
Single phase 0 W to 28.8 kW		(40 μW/VA+ 6(1- <i>P</i> range from 40 μW/ 46 μW/VA	• •			
Three phase 0 W to 86.4 kW		(40 μW/VA + 6(1-F range from 40 μW/ 46 μW/VA				
(The CMC range and uncertaintie	es for star and delta are the	same as for single-ph	ase)			
Operations Manager Authorisation:	Issue 58	Date:02/11/20	Page 18 of 23			

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation Metrology & Calibration Laboratory **SCOPE OF ACCREDITATION**

Accreditation Number 1

(f) Varmeters

Conditions

Voltage 60 V to 240 V, current 0.01 A to 120 A, frequency 45 Hz to 75 Hz, and QF1 to 0, inductive or capacitive

0 W to 28.8 kW

 $(40 \mu Var/VA + 90 QF)$, values range from 40 µVar/VA to 130 µVar/VA

0 W to 86.4 kW

 $(40 \mu Var/VA + 90 QF)$, values range from 40 µVar/VA to 130 µVar/VA

Phase angle indicators (source or meter) (g)

Conditions

Current 0.01 A to 100 A, frequency 45 Hz to 75 Hz, Voltage 0.7 V to 7 V, 42 V to 240 V

-3.14 rad to 3.14 rad

40 µrad

(h) Power factor meters

Same conditions, CMC range and uncertainties as 5.89 (g) above

(i) **Ohmmeters**

 $0.1~\text{m}\Omega$ to $1000~\text{m}\Omega$ (applied current 875 A to 1 A)

 0.1Ω to 1Ω (applied current ≤100 mA) 1 Ω to 10 k Ω 10 $k\Omega$ to 1 $G\Omega$

1 G Ω to 100 G Ω

100 G Ω to 1200 G Ω

 $63R^{-0.35} \mu\Omega/\Omega$, R in m Ω , values range from 141 $\mu\Omega/\Omega$ to

 $6 \mu\Omega/\Omega$ $0.2 \mu\Omega/\Omega$

 $0.12 \mu\Omega/\Omega$

 $(1 + 27R - 20R^{3}) \mu \Omega / \Omega$, R in $G\Omega$, values range from 1

 $\mu\Omega/\Omega$ to 8 $\mu\Omega/\Omega$

 $(-0.07R^2 + 22R - 15) \mu\Omega/\Omega$ R in $G\Omega$, values range from

 $6.9 \ \mu\Omega/\Omega$ to $1485 \ \mu\Omega/\Omega$ $(1300R + 2.2R) \mu\Omega/\Omega$, R in

 $G\Omega$, values range from 1520 $\mu\Omega/\Omega$ to 3940 $\mu\Omega/\Omega$

(k) Galvanometers and null detectors

Same CMC range and uncertainties from 5.89 (a) DC voltmeters

Operations Manager 1 HOBERON Issue 58 Date:02/11/20 Page 19 of 23 Authorisation:

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation Metrology & Calibration Laboratory **SCOPE OF ACCREDITATION**

Accreditation Number 1

(l) Energy meters

Same as 5.89 (e) and (f)

5.90 **Bridges, Potentiometers and Test Sets**

(a) DC bridges

Same as 5.89 (i) Ohmmeters above

(b) DC potentiometers

Same as 5.89 (a) DC Voltmeters above

AC bridges (frequency, f = 40 Hz to 2 kHz) (c)

 0Ω to $1 M\Omega$ $(2000/f + 19R) \mu\Omega$, f in Hz,

R in Ω , values range from 1

 $\mu\Omega$ to 19 Ω

(0.2/f + 22C) pF, f in Hz, C in µF,

values range from 0.0001 pF to

2200 pF

 $(0.2/f + 14L) H \mu H$, f in Hz, L in H, values range from

 $0.0001 \, \mu H$ to $14 \, \mu H$

(f) Current transformer testing sets

Ratio/Phase

0 µF to 100 µF

0 H to 1 H

(frequencies in the range 45 Hz to 65 Hz)

 5.0×10^{-7} to 1.0×10^{-6} Ratio error \pm (0 to 0.002) 2.0×10^{-6} to 8.0×10^{-6} Ratio error ± (0.002 to 0.02) 2.0×10^{-5} to 8.0×10^{-5} Ratio error \pm (0.02 to 0.2)

 5.0×10^{-7} rad to 1.0×10^{-6} rad ± 0 rad to 0.002 rad Phase error $5.0 \times 10^{-6} \text{ rad to } 9.0 \times 10^{-6} \text{ rad}$ Phase error ± 0.002 rad to 0.02 rad $5.0 \times 10^{-5} \text{ rad to } 9.0 \times 10^{-5} \text{ rad}$ Phase error ± 0.02 rad to 0.2 rad

Voltage transformer testing sets (g)

Same as 5.90 (f)

(i) AC and DC bridges for thermometry

Resistance $0~\Omega$ to $400~\Omega$

(frequency, f = DC to 100 Hz)

 $(6 + 0.3 R) \mu\Omega$, R in Ω , values range from 6 $\mu\Omega$ to 126 $\mu\Omega$

Operations Manager Authorisation: 1 \$10/8tro-

Issue 58

Date:02/11/20

Page 20 of 23

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation Metrology & Calibration Laboratory **SCOPE OF ACCREDITATION**

Accreditation Number 1

Resistance ratio $0 \Omega/\Omega$ to $13 \Omega/\Omega$ (frequency, f = DC to 100 Hz)

2.6 x 10⁻⁸

5.91 **Frequency Measurement and Time Measurement**

Time and frequency CMC uncertainties relate only to the reference measuring systems. These uncertainties do not contain any contribution from the instrument under calibration.

(a) Frequency meters

1 Hz to 40 GHz 1 x 10⁻¹⁰ 0.001 Hz to 1 Hz (period) 1 ns

(c) Counters

1 Hz to 40 GHz 1 x 10⁻¹⁰ 0.001 Hz to 1 Hz (period) 1 ns

(d) Time interval meters

10 ns to 86400 s 2 ns or 0.27 ps/s, whichever is

greatest

Frequency standards (g)

2 x 10⁻¹³ 100 kHz to 10 MHz 0.001 Hz to 1 Hz (period) 1 ns

5.92 **Waveform Measurement**

(a) Frequency characteristics

1 in 10⁻¹⁰ 1 Hz to 20 MHz 0.001 Hz to 1 Hz (period) 1 ns

(b) Input characteristics

0.16 mV/V to 2.6 mV/V 1 V and 3 V

(frequency, f = 1 MHz to 100 MHz)

Pulse risetime (T>5 ns) (10 mV to 10 V)

 $0.005 \mu s$ to $1.00 \times 10^6 \mu s$ Q(2 ns, 0.05T), T in s

Operations Manager Authorisation: 1/10/8000

Issue 58

Date:02/11/20

Page 21 of 23

Schedule to

OLIV.	II TOTTLE OF TROOKEDITT	***************************************	Mahahak	
Metrology	n Innovation A Calibration Laboratory OF ACCREDITATION		Accreditation	Number 1
	Pulse amplitude (pulse length > 200 μs) (10 mV, 100 mV, 1 V, 10 V)			
	0 V to 10 V		(30 μV+ 100 Va + 4 applied voltage Va voltmeter range Vr range from 34.2 μ\	in V, in V, values
	(c) Timing characteristics			
	10 ns to 100 s (time difference)		2 ns	
5.93	Signal Sources			
	(a) Frequency characteristics			
	1 Hz to 20 MHz 0.001 Hz to 1 Hz (period)		1 x 10 ⁻¹⁰ 1 ns	
	(b) Output characteristics			
	1 V and 3 V (frequency, $f = 1$ MHz to 100 MHz)		0.16 mV/V to 2.6 m	ıV/V
	Pulse amplitude (pulse length > 200 μ s) (10 mV, 100 mV, 1 V, 10 V)			
	0 V to 10 V		(30 µV + 100 Va + 4 applied voltage Va voltmeter range Vr range from 34.2 µV	in V, in V, values
	Pulse risetime ($T > 5$ ns) (10 mV to 10 V)		,g	
	$0.005 \ \mu s \ to \ 1.00 \ x \ 10^6 \ \mu s$	Q(2 ns, 0.05 <i>T</i>), <i>T</i> in	าร	
5.97	High Voltage Testing			
	(a) Direct voltage			
	0 kV to 50 kV		3 mV/V	
	(b) Alternating voltage			
	1 kV rms to 35 kV rms (frequency, f = 50 Hz to 3 kHz)		1 mV/V	
	ns Manager uthorisation:	Issue 58	Date:02/11/20	Page 22 of 23

Schedule to

CERTIFICATE OF ACCREDITATION

Callaghan Innovation
Metrology & Calibration Laboratory
SCOPE OF ACCREDITATION
ACCREDITATION

Accreditation Number 1

ı	N	_	te	1	
	IV	()	ıe	- 1	

A CMC anticipates the performance of a best available device. Measurement uncertainties achieved for specific calibrations may be greater than CMC uncertainties, but a laboratory may not report measurement uncertainties lower than those in its CMCs. Please contact the laboratory to discuss your specific requirements.

Operations Manager Authorisation:

150/stro-

Issue 58

Date:02/11/20

Page 23 of 23